
CubeCuts: A Novel Cutting Scheme for Packet Classification

Yeim-Kuan Chang
Department of Computer Science and Information

Engineering
National Cheng Kung University

Tainan, 701, Taiwan
ykchang @mail.ncku.edu.tw

Yu-Hsiang Wang
Department of Computer Science and Information

Engineering
National Cheng Kung University

Tainan, 701, Taiwan
p76991418@mail.ncku.edu.tw

Abstract—Packet Classification is one of the most important
services provided by Internet routers nowadays. Decision-tree
based schemes, such as HiCuts and HyperCuts, are the most
well-known algorithms. These schemes separate search space
into many equal-sized sub-spaces. But both schemes have the
same rule replication problem, which might cause large memory
overhead. Although another decision-tree based solution,
Hypersplits, was proposed to cut space according to end-points
for reducing the memory requirement, we still observe that its
rule replication problem doesn’t be solved well and the memory
requirement can still be improved. In this paper, we propose a
scheme called CubeCuts to build a binary decision tree that does
not generate any duplicated rule. By using the hybrid scheme
that combines the CubeCuts and constrained HiCuts, we can
have a memory-efficient data structure such that the entire rule
table of up to10K rules can be fit into the on-chip memory of
FPGA device. Our design is very suitable to be implemented with
parallelism and pipeline. The experimental results show that the
rule replication ratio is very low in all rule tables (ACL, FW, and
IPC). The proposed parallel and pipelined architecture based on
the hybrid scheme can achieve a throughput of 118 Gbps, which
is enough to deal with the Internet traffic that is growing rapidly
in recent years.

Keywords-FPGA; packet classification; decision-tree based
algorithms; pipeline;

I. INTRODUCTION
Packet classification is a functionality of Internet routers

that is needed for many important network services. It's
usually mentioned by some features of networks like virtual
private networks (VPNs), quality of service (QoS), network
address translation (NAT), load balancing, traffic
accumulating, differentiated services, etc. The basic packet
classification problem is that router extracts the header fields
of Internet packets and compares them with the rules pre-
defined by network administrators. The extracted packet
header fields consist of source address (SA), destination
address (DA), source port (SP), destination port (DP), and
protocol (Pro). Each rule is composed by these five fields
and an action value. The action value of the matched rule
will be taken by the packets, like “denied” or “accept” in
Firewall (FW) rulesets. If one packet matches more than one
rule, router must get the action value of the highest-priority
rule.

Packet classification algorithms [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 15, 16] are still being improved by many
researchers in recent years. It can be classified into many
categories. The decision-tree based algorithm is one of most
well-known solutions [5][11][12][16] such as HiCuts [5] and
HyperCuts [12]. Both algorithms decompose the search
space into many equal-sized sub-spaces, and it repeats
recursively until the rules remaining the bucket associated
with the node is no more than a threshold value. These
algorithms have the same problems of high memory
overhead when rule replications occur frequently. HyperSplit
[11] proposed a cutting scheme based on endpoints to reduce
the occurrence of rule replication. EffiCuts [16] proposed a
heuristic for sub-spaces merging and a rule-partition skill to
solve memory problem. Both HyperSplit and EffiCuts have
improved decision-tree based algorithms by reducing the
redundancy in wasting storage. We observe that the rule
replication problem still exists and could be improved
further. In this paper, we propose a novel cutting scheme
called CubeCuts. CubeCuts builds a binary decision tree by
selecting a subcube and dividing the search space into the
one inside the subcube and the other outside of the subcube.
The advantage is that CubeCuts does not replicate the rules.
Since finding a prefect subcube to performance the search
space decompose process is not easy, we propose a hybrid
scheme that combines the CubeCuts and a constrained
version of HiCuts to allow a small amount of replicated
rules. The hybrid scheme provides a balance between the
required memory usage and the height of the binary decision
tree. Our experiments will show that the proposed CubeCuts
outperforms HyperCuts and EffiCuts.

The rest of the paper is organized as follows. We
describe the basic problem of existing decision-tree based
algorithms in section II and propose a novel cutting scheme
called CubeCuts in section III. Section IV shows our
architecture design. The experimental results are given in
section V. Finally, the conclusion remark is made in section
VI.

II. RELATED WORK

A. Packet Classification
Packet classification can be solved by searching the

ruleset (also called rule table) sequentially. If there are N
rules in rule table, the searching time costs O(N). The

2012 26th International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-4652-0/12 $26.00 © 2012 IEEE

DOI 10.1109/WAINA.2012.110

274

decision-tree based schemes separate the rules into many
small subsets, which are small enough to perform the linear
search. The procedure of building decision tree is also called
space decomposition, which means rules are divided
according to the rule orientation. This procedure starts from
root node, and rules are separated into child nodes
recursively by space decomposition procedure until the
number of rules is under a threshold value. Table I shows a
sample rule table and its geometric view in two dimensional
(2-D) space. The separated rules are stored in the
corresponding leaf nodes also called buckets. If there are L
leaf nodes, the average height of decision tree is O(logL). So
the searching time is reduced from O(N) to O(log L).

B. Existing Algorithms.
1) HiCuts and HyperCuts

HiCuts [5] decomposes the searching space into many
equal-sized subspaces recursively until the rules covered by
each subspace is less than the pre-defined bucket size. The
root node covers the whole searching space which contains
all rules. HiCuts selects one dimension (or called field) to cut
and decide how many subspaces should be taken for this
dimension. Each child node covers one sub-space, and the
parent node records the selected dimension and the number
of subspaces (also called number of cuts) as cut information.
Rules covered by root node are separated into each child
node which covers them. If a rule cannot be covered by only
one sub-space, a rule replication is needed. Figure 1
illustrates how HiCuts separates searching space, and the
number of rules increases from 5 to 10 due to rule
replication.

The searching process starts from the root node. Header
of incoming packet is compared with the cut information of
root to decide which child node should be visited next. When
searching process reaches a leaf node, it searches the rules
inside the bucket sequentially to get the matched rule.

HyperCuts [12] can be regarded as the multi-dimensional
version of HiCuts. It can select more than one dimension to
cut. In general, the searching time of HyperCuts is smaller
than HiCuts because HyperCuts has a lower tree height. But
the node size of HyperCuts is larger than that of HiCuts due
to the larger cut information. HiCuts and HyperCuts face a
major problem when the rule replication occurs frequently,
which causes an unacceptable memory blowout problem for
large rule tables.

2) HyperSplit
In Hypersplit [11], the size of separated sub-spaces is not

equal. Hypersplit cuts the searching space by endpoints in a
single dimension to improve the rule replication problem.
Hypersplit calculates a value by heuristic called weighted
segment balanced strategy to decide which endpoint should
be selected. This heuristic tries to make the covering rules
between left and right child nodes equal. Although the rule
replication problem of Hypersplit is less than previous two
algorithms, the node size of Hypersplit is larger than HiCuts
and HyperCuts because of large cut information in endpoint
format.

3) EffiCuts

EffiCuts [16] is proposed in two different aspects. One is
node merging operation that tries to combine similar sibling
nodes into one. After merging, the child nodes and the child
pointer stored as cut information are reduced. The other one
is that EffiCuts uses a grouping method to separate all rules
before creating a decision tree. Each rule is classified and
belongs to one group, depending on whether the value of
each dimension is don’t-care or not. Each group creates its
own decision-tree independently. The grouping method
works when the characteristic of rule table is significantly
similar to Firewall and IPC. But EffiCuts has two node
formats, it’s very difficult to implement it in Hardware
environment.

C. Analysis
1) Searching time

The key point of decision-tree based algorithm is how to
construct a balanced decision tree with minimum tree height
close to O(log L), where L is the number of leaf node. Most
of the decision-tree based algorithms were proposed by using
heuristic to determine which dimension should be cut first
and where should be cut better.

2) Memory requirement
Another factor we care about is the memory requirement.

The memory storage depends on the node size and total
number of nodes. Node size is related to what cut
information is stored. The rule replication problem might
consume more space decomposition procedures because the
number of rules covered by current node is larger than
predefined bucket size. The height of decision tree becomes
deeper due to this phenomenon. It not only causes more
nodes to be created but also increase searching time.

We focus on two things, rule replication and balancing.
Especially, source port field and destination port field are
represented in range format. The rule replication problem
can’t be avoided when any two ranges are partially
overlapped or a rule has a don’t-care value in these fields.

Rule Field-X Field-Y
R1 [0,0] [1,2]
R2 [2,2] [0,0]
R3 [0,3] [3,3]
R4 [0,1] [0,3]
R5 [2,3] [0,3]

X 0 1 2 3

3

2

1

0
Y

R3
R4

R3
R4

R3
R5

R3
R5

R1
R4 R4 R5 R5
R1
R4 R4 R5 R5

R4 R4 R2
R5 R5

TABLE I. AN EXAMPLE OF 2-D RULE TABLE IN 2-BIT ADDRESS SPACE.

R3
R4

R3
R4

R3
R5

R3
R5

R1
R4 R4 R5 R5
R1
R4 R4 R5 R5

R4 R4 R2
R5 R5

R1,R2,R3,R4,R5

R1,R3,R4 R2,R3,R5

R1,R3,R4R1
R4

R3
R4

R1
R4

R3
R5

R2
R5

Figure 1: An example of HiCuts

275

The decision-tree based algorithms like HiCuts and
HyperCuts deal them with large rule replication. When the
size of rule table becomes larger, these two algorithms are
hard to work in reality. Balancing is another factor we
concern about. The number of rules in child nodes must be
equal to each other to make tree balanced instead of skewing.
A good decision-tree based algorithm must have a novel
cutting strategy to reduce rule replication and keep decision
tree balanced.

 In this paper, we propose our scheme in two aspects.
One is new grouping method, and another is space
decomposing algorithm with low rule replication and balance
factor. We implement our proposed scheme in Field-
programmable Gate Array (FPGA). Hardware environment
can design pipeline and parallel architecture to reach a high
throughput, if the memory is small enough to be fit in on-
chip memory of FPGA. However, the drawback is that the
hardware logic designed to perform the search is more
complicated than the existing schemes. In other words, when
implemented in FPGA, more slices will be needed.

III. PROPOSED SCHEME

A. Definitions and Notations
Given two ranges in single dimension, A = [a1, a2] and B

= [b1, b2], there are only three possible relationships between
A and B.

Enclosure: b1 � a1 � a2 � b2 or a1 � b1 � b2 � a2.
Disjoint: a2 < b1 or b2 < a1.
Partially overlapped: A and B are neither enclosure nor

disjoint.
In 5-dimensional space (also called address space),

every rule has one range value in each dimension (prefix
could be regarded as a range). If the range values of two
rules R1 and R2 in any dimension are disjoint, R1 and R2 must
be disjoint in the 5-dimensional address space. Let a rule be
represented by ([l1, h1], [l2, h2], [l3, h3], [l4, h4], [l5, h5]). We
define L = (l1, l2, l3, l4, l5) as the low address and H = (h1, h2,
h3, h4, h5) as the high address of the rule and the rule locates
in between the low and high addresses.

The proposed scheme includes two phases, the grouping
phase and space decomposition phase. Based on many

researches analyzing the general rule tables in the past, the
rule replication problem is be lessened significantly by
dividing rules into subgroups and construct the packet
classification data structure for each subgroup independently.
Then we can search each subgroup sequentially if it’s a
software based solution in uniprocessor environment or
search all the subgroups in parallel if it’s a hardware based
solution implemented in the network processor, ASIC, or
FPGA, etc. Therefore, like many other schemes, the first
phase of ours proposed scheme is grouping the rules. In the
second phase, we will apply a novel algorithm called
CubeCuts to each subgroup. CubeCuts is proposed to be a
scheme which does not generate any replicated rule. Zero
replication cannot be done by any existing decision-tree
based algorithm. As a result, the required memory will be
less than the existing schemes. Also, the proposed will have
higher search speed when the proposed CubeCuts scheme is
implemented as a pipelined architecture in FPGA.

B. Grouping Phase
A good grouping scheme helps to resolve the rule

replication problem. The proposed grouping procedure
consists of two steps. First, we group rules according to the
distribution of don’t-care values in all fields. For example,
the values of source port field in ACL tables are all don’t-
care, the source IP and source port fields are usually don’t-

care in Firewall tables. There are �
=

5

0

5

i
iC = 32subgroups,

where 5
iC is the number of subgroups in which all the rules

have don’t-care values in i fields. It is possible that some
groups are empty for real-world rule tables. For instance,
based on the analysis for various rule tables in [3], there are
only 5-6 groups for ACL and FW tables of 10K rules.
However, there exist 12 groups for IPC table of 10K rules. In
order to keep the number of groups to a smaller size which is
set to 3 in this paper, we pick up the two groups that contain
the most and second most numbers of rules and merge all the
remaining groups to be the third group. As a result, we have
three groups. In the second step, the rules in each of the three
groups are divided into more subgroups containing only
disjoint rules based on the 5-dimensional disjoint
relationship. In other words, after the second grouping step,
all rules are 5-D disjoint in each subgroup. Figure 2
illustrates that the rule table in Table I is divided into two
subgroups, {R1, R2, R3} and {R4, R5}. R1, R2, R3 are 2-D
disjoint with each other, and so on between R4 and R5.

C. CubeCuts
The proposed space decomposition scheme is called

CubeCuts. We decompose the address space by using the 5-
dimensional sub-cubes. For a chosen subcube, the 5-D space
is divided into two parts: one is the sub-space inside the
subcube, and the other is the subspace outside the subcube.
As done by the proposed CubeCuts, a binary decision is
constructed. We don’t consider the multiway decision tree
because our focus is the pipelined architecture implemented
in FPGA and thus the tree depth does not have a negative

Figure 2: Grouping rules with disjoint relationship in 2-D space

R1,R2,R3

R2 R1
R3

R4,R5

R5 R4

R3

R1

R2

R4 R5

(a)

C1(L1, H1)
L1 = (0,1)
H1 = (3,3)

C2(L2, H2)
L2 = (0,0)
H2 = (1,3)

(b)

276

impact on search speed. The child node which represents
outside the subcube can be processed recursively without
changing its cover range in 5-D address space. Another child
node representing the address space inside the subcube can
also be processed recursively in the reduced address space at
the next iteration. Figure 2 illustrates the decision trees built
for the two subgroups. R1 and R3 are inside subcube C1((0,1),
(3,3)) and R2 is outside of C1. Similarly, in figure 2(b), R4 is
inside subcube C2((0,0), (1,3)) and R5 is outside of C2.

Since the rules in each subgroup are disjoint, it is easy to
select a subcube to divide the rules into two parts such that
no rule is replicated. The simplest subcube selection method
in CubeCuts is to select the low and high addresses of one
rule, L and H and cut the rules by the subcube C(L, H). We
always can find subcube to decompose the address space
without any rule replication. However, it is the worst case
because there is only one rule inside the subcube C(L, H). As
a result, the decision tree built this way is a skewed tree.
However, computing the best subcube for cutting is a very
time-comsuming task. Therefore, we use a simple heuristic
to choose a subcube for cutting as follows. Let the number of
rules in the current node to be processed be N. From the N
lower addresses (L1, …, LN) and N high addresses (H1, …,
HN), there are N× N pairs of (Li, Hj) which can form a
subcube for cutting, where i , j = 1 to N. Among the
subcubes formed by all these N× N pairs of (Li, Hj), we select
the one such that balance factor called C_Balance is the
minimum, where the balance factor is defined to be the

difference between the number of rules inside and outside of
the subcube. The detailed algorithm is shown in the first part
of Figure 3.

Based on the observation from our experiments,
sometimes allowing a small number of rule replications can
avoid building a bad skewed tree of a very large depth. So,
we decide to merge other existing decision trees to avoid this
situation. Currently, we adopt HiCuts because the decision
tree constructed by HiCuts is also binary and the nodes in
HiCuts can share the same node format as CubeCuts. Since
the rule replications in HiCuts can be numerous, we propose
a modified version of HiCuts called constrained HiCuts as
follows.

Constrained HiCuts (CHiCuts)- We constrain HiCuts by
a rule replication ratio threshold in percentage. It means that
the rule replication is less than threshold percent of the
original number of rules after cutting. Specifically, no more
than threshold rules are replicated every 100 rules after
cutting. In the experiment, the threshold value is set to 30.
The detailed algorithm is shown in the second part of Figure
3. Notice that the definition of the balance factor H_Balance
for CHiCuts is similar to C_Balance.

D. Choosing between CubeCuts and Constrained HiCuts
We choose the cutting method between CubeCuts and

constrained HiCuts. The more “balanced” one must be
chosen. If rule replications are more than 30% in constrained
HiCuts, constrained HiCuts cannot be selected. As shown in
the last part of Figure 3, the actual cutting method selected
between CubeCuts and CHiCuts is the one whose balance
factor is smaller than the other. Although we use two
methods in space decomposition procedure, we can still
record the cut information in the same format. For the
sample in Figure 2(b), the space is cut into two equal-sized
subspaces. It can be regarded as a typical HiCuts, but we
record L2 (0,0) and H2 (1,3), which is the same format as in
the CubeCuts. It is easier to design the comparator circuit in
hardware implementation.

When performing the search procedure, the header of
incoming packet is compared with the cut information
recursively until reaching a leaf node. For instance, in Figure
2(a), if the incoming packet header is K = (2, 2), then the left
child node should be searched. If K = (3, 0), it will traverse
the right child node because (3, 0) is not inside the subcube
C((0,1), (3, 3)).

Our scheme reaches the goal of very low rule replication
even in largest rule table. Table II shows the results of three
different rulesets with sizes 1K, 5K, 10K. The left number is
total rules after the decision tree is constructed, and the right

// CubeCuts
01 Besti = Null;
02 Bestj = Null;
03 C_balance = �;
04 for i = 1 to N;
05 for j = 1 to N;
06 perform CubeCuts with subcube C(Li, Hj)
07 Diff = | |RL-Child| - |R R-Child| |
08 if ((|RChild| == |RN|) && (Diff < C_balance))
09 C_balance = Diff
10 Besti = i;
11 Bestj = j;
12 endif
13 endfor
14 endfor
// Constrained Hicuts
15 Bestk = 0;
16 H_balance = �;
17 for k = 1 to 5;
18 Perform HiCuts on dimension k
19 Diff = | |RL-Child| - |R R-Child| |
20 if ((|RChild| < |RN|*(1+ threshold %))&& (Diff <H_balance))
21 H_balance = Diff;
22 Bestk = k;
23 endif
24 endfor
// Selection Heuristic
25 if (H_balance < C_balance) return HiCuts with dimension Bestk
26 else return CubeCuts with subcube C(LBesti, HBestj)

Figure 3: Selection heuristic between CubeCuts and CHiCuts.

TABLE II. RULE REPLICATION RATIO

Ruleset size ACL1 Firewall1 IPC1
10K 9897/9603

103%
12633/9311

136%
11533/9037

128%
5K 4823/4415

109%
6803/4653

146%
5300/4460

119%
1K 965/916

105%
1023/791

129%
1015/938

108%

277

one is the original size of rule table, and the rule replication
ratio is shown as the percentage number below. Even for the
worst case in Firewall1 of 5K rules, the rule replication ratio
isn’t larger than 150% (100% means no rule replication).

IV. ARCHITECTURE IMPLEMENTATION ON FPGA
Our proposed scheme is very suitable for hardware

implementation. Either pipeline or the parallel architecture
can improve throughput in hardware design. Each decision
tree is mapped on one search engine, so we can search all
decision trees simultaneously by the parallel architecture.
The pipeline architecture is used in two parts, Tree-pipeline
and bucket-pipeline. As we mentioned before, searching
procedure traces the decision tree to the leaf node and search
rules sequentially through this node (bucket). Cut
information is stored in memory at corresponding stage in
Tree-pipeline. Bucket-pipeline contains 8 pipeline stages
following the tree-pipeline. All rules are stored in memory of
bucket-pipeline with end-point format.

In our implementation, the protocol fields are not used to
construct the decision trees. The protocol field is only used
in the bucket search. Each node in Tree-pipeline needs
215bits, 1 bit set when it’s a leaf node, 96*2 bits for two end-
points (SA, DA, SP, DP), and 11*2 bits for two pointer of

child nodes.
Each rule stored in bucket-pipeline needs 222 bits

including 104*2 bits for the complete information for a rule
in the end-point format (SA, DA, SP, DP, Pro) and 14 bits
for the number of rules for the largest rule table containing
over 10,000 (10K) rules.

A. Dataset and Architecture Setup
We use Access Control List (ACL), Firewall rules (FW)

and IP Chains (IPC) with sizes 1K, 5K and 10K, generated
by the ClassBench [14] and select Xilinx vertex-5[17]
xc5vfx200t device with speed grade -2 in our experimental
results.

B. Memory Consumption
The number of total leaf nodes is very low because our

scheme having low rule replication. The rule mapping
method is shown in Figure 4. We compute block memory
utilization by adding number of entry * memory width of
each memory we use. Table III shows the memory storage
requirement in hardware implementation.

Dual-ported Block-Rams on FPGA are used to
implement necessary storage requirement. If the number of
memory entries is less than 128, we use Distributed-Rams
instead of Block-Rams by using LUT to reduce usage of the
Block-Rams.

C. Circuit Design
Circuit design of a pipeline stage affects the maximum

frequency our design can reach. If the logic operation is
more complex, the gate delay between two registers must be
longer. It makes throughput lower because of the long clock
period.

The main factor of gate delay depends on the complexity
of searching procedure. If the operation of visiting a tree
node has many consecutive computations, it will cause a
high gate delay. Our proposed algorithm needs to compare
the values of four fields twice. It seems having a large
amount of computation, but all computation is independent
to each other. Figure 5 is the implementation of branching
circuit. The branching circuit computes the child pointer to
be taken. There are eight comparators in the branching
circuit, two of which are 32 bits, and another two are 16 bits.
The longest path of this circuit is a 32-bit comparator plus an

Leaf#1-Rule#1
Leaf#2-Rule#1

.

.

.
Leaf#N-Rule#1

Leaf#1-Rule#8
Leaf#2-Rule#8

.

.

.
Leaf#N-Rule#8

… … …

Packets

PacketH
eaderProcessor

Tree-pipeline 1

Tree-pipeline 2

Tree-pipeline N

…
…

 …

Bucket-pipeline 1

Bucket-pipeline 2

Bucket-pipeline n

…
…

 …

Priority Selector

 H
ighest Priority R

ule

Figure 4: Search Engine with parallel and pipeline architecture.
(a) (b)

Destination
Port

Figure 5: Architecture of branching circuit

L
SA

L
DA

L
SP

L
DP

H
SA

H
DA

H
SP

H
DP

A
A � B

B

A
A � B

B

A
A � B

B

A
A � B

B

A
A � B

B

A
A � B

B

A
A � B

B

A
A � B

B

Source
Port

Destination
Address

Source
Address

Header fields of
Incoming Packet

AND Gate
Branch

C(L, H) from
Memory Data

32 32 16 16 32 32 16 16

16

16

32

32

1

278

AND gate. So, our circuit takes short gate delay to reach
very high throughput.

V. EXPERIMENTAL RESULTS
Our proposed scheme has two parts. The grouping result

represents how many decision trees we should create. The
tree-pipelines in parallelism are shown in Figure 4. There are
7 subgroups in ACL1-10K, 10 subgroups in FW1-10K, and
14 subgroups in IPC1-10K. The maximum heights of trees
built for the three rule tables mentioned above are 22, 23,
and 37, respectively.

Table IV shows the experimental results of hardware
design in Xilinx ISE 12.2 environment, in terms of the slice
resources and on-chip memory used.

Our design can achieve the throughput of over 118Gbps
assuming the minimum packet size of 40 bytes. Table V
shows the throughput comparison between our scheme and
other methods [3][7][10][4][8][13][9]. SPMT by PW and PL
[3] and Improved HyperCuts[7] have most similar conditions
to our design. So, we show the details among these three
methods in Table VI. We can see that our design has lowest
total memory (1966Kbytes vs 612Kbytes vs 93Kbytes),

Block-RAMs utilization (94% vs 89% vs 43%), and highest
throughput (110.73 Gbps vs 80.23Gbps vs 118.46 Gbps).

VI. CONCLUSION
We proposed a novel decision-tree based algorithm

called CubeCuts which is suitable in hardware environment.
The grouping method with disjoint relationship greatly
reduces the memory storage requirements. The size of on-
chip memory is no longer a bottleneck no matter what kind
the rule table is. In FPGA implementation, the decision
making computation of searching procedure is a parallel and
pipelined architecture. So we can reach the high throughput
with low memory usage. Our future work includes building a
multi-ways decision tree of CubeCuts without increasing
clock period too much. If we reduce the number of pipeline
stages (tree height), the hardware cost of FPGA could be
further lowered.

REFERENCES
[1] F. Baboescu , G. Varghese. “Scalable Packet Classification,” Proc.

ACM SIGCOMM 2001, pp. 199–210, 2001.
[2] Y.-K. Chang, "Efficient Multidimensional Packet Classification with

Fast Updates," IEEE Transactions on Computers, VOL. 58, NO. 4,
pp. 463-479, APRIL 2009 (SCI).

[3] Y.-K. Chang, Y.-S. Lin, and C.-C. Su, “A High-Speed and Memory
Efficient Pipeline Architecture for Packet Classification”, Proc. IEEE
FCCM, pp. 215-218, 2010.

[4] S. Dharmappurikar, H. Song, J. Turner, and J. Lockwood, “Fast
Packet Classification Using Bloom Filters”, Proc. ACM/IEEE ANCS,
2006.

[5] P. Gupta , N. McKeown. “Packet Classification Using Hierarchical
Intelligent Cuttings”, Proc. Hot Interconnects, 1999.

[6] P. Gupta , N. McKeown. “Algorithms for packet classification”, IEEE
Network, Vol. 15, No. 2, pp:24–32, 2001.

[7] W. Jiang , V. K. Prasanna, “Large-Scale Wire-Speed Packet
Classification on FPGAs”, Proc. ACM/SIGDA FPGA, 2009.

[8] A. Kennedy, X. Wang, Z. Liu, and B. Liu, “Low Power Architecture
for High Speed Packet Classification”, Proc. ACM/IEEE ANCS,
2008.

[9] A. Nikitakis and I. Papaefstathiou, “A Memory-Efficient FPGA-
Based Classification Engine”, Proc. IEEE FCCM, 2008.

[10] I. Papaefstathiou and V. Papaefstathiou, “Memory-Efficient 5D
Packet Classification at 40 Gbps”, Proc. IEEE FCCM, 2008.

[11] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li. “Packet Classification
Algorithms: From Theory to Practice”, Proc. INFOCOM 2009, pp.
648– 656, 2009.

[12] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet
Classification using Multidimensional Cutting”, Proc. ACM
SIGCOMM 2003, pp. 213-224.

[13] H. Song and J. W. Lockwood, “Efficient Packet Classification for
Network Intrusion Detection Using FPGA”, Proc. FPGA, pp. 238-
245, 2005.

[14] D. E. Taylor and J.S. Turner, “ClassBench: a packet classification
benchmark”, INFOCOM 2005, vol.3, pp. 2068-2079, 13-17 March
2005.

[15] D. E. Taylor. Survey and taxonomy of packet classification
techniques. ACM Comput. Surv., Vol. 37, No. 3, pp:238–275, 2005.

[16] B. Vamanan, G. Voskuilen and T.N. Vijaykumar. “EffiCuts:
Optimizing Packet Classification for Memory and Throughput”, Proc.
ACM SIGCOMM 2010, pp. 207-218.

[17] Xilinx, “Virtex-5 Family Overiew”, Product Specification, DS100
(v5.0), Feb. 6, 2009, at http://www.xilinx.com.

TABLE III. MEMORY REQUIREMENT (KBITS)

Ruleset size ACL1 Firewall1 IPC1
10K 745.8 1026.4 967.9
5K 380.1 489.5 442.6
1K 77.9 85.4 83.9

TABLE IV. IMPLEMENTATION RESULT

 ACL1-10K FW1-10K IPC1-10K
occupied

Slices
11414/30720

37%
15505/30720

48%
24798/30720

80%
Block Ram

Utilization
195/456

43%
244/456

53%
194/456

42%
Clock period 5.276 (ns) 5.415 (ns) 5.398 (ns)

TABLE V. COMPARISION WITH OTHER METHODS

Approaches # of rules Throughput (Gbps)
Our approach 9603 118.46

SPMT PW and PL[3] 9603 110.73
Improved HyperCuts [7] 9603 80.23

B2PC in ASIC [10] 3300 13.60
NTLMC [4] 12507 12.16

Power Saved HyperCuts [8] 25000 10.24
BV-TCAM [13] 222 10.00

2sBFCE [9] 4000 5.86

TABLE VI. COMPARISION WITH IMPROVED HYPERCUTS AND SPMT

 SPMT by PW
and PL [3]

Improved
HyperCuts [7]

Our
Approach

Number of rules 9603 9603 9603
Total Memory(KB) 1966 612 93
Number of occupied

Slices
6854 / 30720

24%
10307/30720

33%
11414/30720

37%
Number of Block-
Rams utilization

429 / 456
94%

407/456
89%

195/456
43%

Frequency (MHz) 173.02 125.4 189.5
Throughput (Gbps) 110.73 80.23 118.46

279

