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Abstract—Packet Classification is one of the most important 
services provided by Internet routers nowadays. Decision-tree 
based schemes, such as HiCuts and HyperCuts, are the most 
well-known algorithms. These schemes separate search space 
into many equal-sized sub-spaces. But both schemes have the 
same rule replication problem, which might cause large memory 
overhead. Although another decision-tree based solution, 
Hypersplits, was proposed to cut space according to end-points 
for reducing the memory requirement, we still observe that its 
rule replication problem doesn’t be solved well and the memory 
requirement can still be improved. In this paper, we propose a 
scheme called CubeCuts to build a binary decision tree that does 
not generate any duplicated rule. By using the hybrid scheme 
that combines the CubeCuts and constrained HiCuts, we can 
have a memory-efficient data structure such that the entire rule 
table of up to10K rules can be fit into the on-chip memory of 
FPGA device. Our design is very suitable to be implemented with 
parallelism and pipeline. The experimental results show that the 
rule replication ratio is very low in all rule tables (ACL, FW, and 
IPC). The proposed parallel and pipelined architecture based on 
the hybrid scheme can achieve a throughput of 118 Gbps, which 
is enough to deal with the Internet traffic that is growing rapidly 
in recent years. 

Keywords-FPGA; packet classification; decision-tree based 
algorithms; pipeline; 

I. INTRODUCTION 
Packet classification is a functionality of Internet routers 

that is needed for many important network services. It's 
usually mentioned by some features of networks like virtual 
private networks (VPNs), quality of service (QoS), network 
address translation (NAT), load balancing, traffic 
accumulating, differentiated services, etc. The basic packet 
classification problem is that router extracts the header fields 
of Internet packets and compares them with the rules pre-
defined by network administrators. The extracted packet 
header fields consist of source address (SA), destination 
address (DA), source port (SP), destination port (DP), and 
protocol (Pro). Each rule is composed by these five fields 
and an action value. The action value of the matched rule 
will be taken by the packets, like “denied” or “accept” in 
Firewall (FW) rulesets. If one packet matches more than one 
rule, router must get the action value of the highest-priority 
rule. 

Packet classification algorithms [1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 15, 16] are still being improved by many 
researchers in recent years. It can be classified into many 
categories. The decision-tree based algorithm is one of most 
well-known solutions [5][11][12][16] such as HiCuts [5] and 
HyperCuts [12]. Both algorithms decompose the search 
space into many equal-sized sub-spaces, and it repeats 
recursively until the rules remaining the bucket associated 
with the node is no more than a threshold value. These 
algorithms have the same problems of high memory 
overhead when rule replications occur frequently. HyperSplit 
[11] proposed a cutting scheme based on endpoints to reduce 
the occurrence of rule replication. EffiCuts [16] proposed a 
heuristic for sub-spaces merging and a rule-partition skill to 
solve memory problem. Both HyperSplit and EffiCuts have 
improved decision-tree based algorithms by reducing the 
redundancy in wasting storage. We observe that the rule 
replication problem still exists and could be improved 
further. In this paper, we propose a novel cutting scheme 
called CubeCuts. CubeCuts builds a binary decision tree by 
selecting a subcube and dividing the search space into the 
one inside the subcube and the other outside of the subcube. 
The advantage is that CubeCuts does not replicate the rules. 
Since finding a prefect subcube to performance the search 
space decompose process is not easy, we propose a hybrid 
scheme that combines the CubeCuts and a constrained 
version of HiCuts to allow a small amount of replicated 
rules. The hybrid scheme provides a balance between the 
required memory usage and the height of the binary decision 
tree. Our experiments will show that the proposed CubeCuts 
outperforms HyperCuts and EffiCuts. 

The rest of the paper is organized as follows. We 
describe the basic problem of existing decision-tree based 
algorithms in section II and propose a novel cutting scheme 
called CubeCuts in section III. Section IV shows our 
architecture design. The experimental results are given in 
section V. Finally, the conclusion remark is made in section 
VI. 

II. RELATED WORK 

A. Packet Classification 
Packet classification can be solved by searching the 

ruleset (also called rule table) sequentially. If there are N 
rules in rule table, the searching time costs O(N). The 
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decision-tree based schemes separate the rules into many 
small subsets, which are small enough to perform the linear 
search. The procedure of building decision tree is also called 
space decomposition, which means rules are divided 
according to the rule orientation. This procedure starts from 
root node, and rules are separated into child nodes 
recursively by space decomposition procedure until the 
number of rules is under a threshold value. Table I shows a 
sample rule table and its geometric view in two dimensional 
(2-D) space. The separated rules are stored in the 
corresponding leaf nodes also called buckets. If there are L 
leaf nodes, the average height of decision tree is O(logL). So 
the searching time is reduced from O(N) to O(log L). 

B. Existing Algorithms. 
1) HiCuts and HyperCuts  

HiCuts [5] decomposes the searching space into many 
equal-sized subspaces recursively until the rules covered by 
each subspace is less than the pre-defined bucket size. The 
root node covers the whole searching space which contains 
all rules. HiCuts selects one dimension (or called field) to cut 
and decide how many subspaces should be taken for this 
dimension. Each child node covers one sub-space, and the 
parent node records the selected dimension and the number 
of subspaces (also called number of cuts) as cut information. 
Rules covered by root node are separated into each child 
node which covers them. If a rule cannot be covered by only 
one sub-space, a rule replication is needed. Figure 1 
illustrates how HiCuts separates searching space, and the 
number of rules increases from 5 to 10 due to rule 
replication. 

The searching process starts from the root node. Header 
of incoming packet is compared with the cut information of 
root to decide which child node should be visited next. When 
searching process reaches a leaf node, it searches the rules 
inside the bucket sequentially to get the matched rule. 

HyperCuts [12] can be regarded as the multi-dimensional 
version of HiCuts. It can select more than one dimension to 
cut. In general, the searching time of HyperCuts is smaller 
than HiCuts because HyperCuts has a lower tree height. But 
the node size of HyperCuts is larger than that of HiCuts due 
to the larger cut information. HiCuts and HyperCuts face a 
major problem when the rule replication occurs frequently, 
which causes an unacceptable memory blowout problem for 
large rule tables. 

2) HyperSplit 
In Hypersplit [11], the size of separated sub-spaces is not 

equal. Hypersplit cuts the searching space by endpoints in a 
single dimension to improve the rule replication problem. 
Hypersplit calculates a value by heuristic called weighted 
segment balanced strategy to decide which endpoint should 
be selected. This heuristic tries to make the covering rules 
between left and right child nodes equal. Although the rule 
replication problem of Hypersplit is less than previous two 
algorithms, the node size of Hypersplit is larger than HiCuts 
and HyperCuts because of large cut information in endpoint 
format.  

3) EffiCuts 

EffiCuts [16] is proposed in two different aspects. One is 
node merging operation that tries to combine similar sibling 
nodes into one. After merging, the child nodes and the child 
pointer stored as cut information are reduced. The other one 
is that EffiCuts uses a grouping method to separate all rules 
before creating a decision tree. Each rule is classified and 
belongs to one group, depending on whether the value of 
each dimension is don’t-care or not. Each group creates its 
own decision-tree independently. The grouping method 
works when the characteristic of rule table is significantly 
similar to Firewall and IPC. But EffiCuts has two node 
formats, it’s very difficult to implement it in Hardware 
environment. 

C. Analysis 
1) Searching time  

The key point of decision-tree based algorithm is how to 
construct a balanced decision tree with minimum tree height 
close to O(log L), where L is the number of leaf node. Most 
of the decision-tree based algorithms were proposed by using 
heuristic to determine which dimension should be cut first 
and where should be cut better. 

2) Memory requirement  
Another factor we care about is the memory requirement. 

The memory storage depends on the node size and total 
number of nodes. Node size is related to what cut 
information is stored. The rule replication problem might 
consume more space decomposition procedures because the 
number of rules covered by current node is larger than 
predefined bucket size. The height of decision tree becomes 
deeper due to this phenomenon. It not only causes more 
nodes to be created but also increase searching time. 

We focus on two things, rule replication and balancing. 
Especially, source port field and destination port field are 
represented in range format. The rule replication problem 
can’t be avoided when any two ranges are partially 
overlapped or a rule has a don’t-care value in these fields. 

Rule Field-X Field-Y 
R1 [0,0] [1,2] 
R2 [2,2] [0,0] 
R3 [0,3] [3,3] 
R4 [0,1] [0,3] 
R5 [2,3] [0,3] 

X    0           1            2           3 

3 
 
2  
 
1 
 
0 
Y 

R3 
R4 

R3
R4 

R3
R5 

R3
R5 

R1 
R4 R4 R5 R5 
R1 
R4 R4 R5 R5 

R4 R4 R2
R5 R5 

TABLE I.        AN EXAMPLE OF 2-D RULE TABLE IN 2-BIT ADDRESS SPACE. 
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Figure 1: An example of HiCuts 
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The decision-tree based algorithms like HiCuts and 
HyperCuts deal them with large rule replication. When the 
size of rule table becomes larger, these two algorithms are 
hard to work in reality. Balancing is another factor we 
concern about. The number of rules in child nodes must be 
equal to each other to make tree balanced instead of skewing. 
A good decision-tree based algorithm must have a novel 
cutting strategy to reduce rule replication and keep decision 
tree balanced. 

     In this paper, we propose our scheme in two aspects. 
One is new grouping method, and another is space 
decomposing algorithm with low rule replication and balance 
factor. We implement our proposed scheme in Field-
programmable Gate Array (FPGA). Hardware environment 
can design pipeline and parallel architecture to reach a high 
throughput, if the memory is small enough to be fit in on-
chip memory of FPGA. However, the drawback is that the 
hardware logic designed to perform the search is more 
complicated than the existing schemes. In other words, when 
implemented in FPGA, more slices will be needed. 

 

III. PROPOSED SCHEME 

A. Definitions and Notations 
Given two ranges in single dimension, A = [a1, a2] and B 

= [b1, b2], there are only three possible relationships between 
A and B.  

Enclosure: b1 � a1 � a2 � b2  or  a1 � b1 � b2 � a2. 
Disjoint:  a2 < b1  or  b2 < a1. 
Partially overlapped: A and B are neither enclosure nor 

disjoint. 
In 5-dimensional space (also called address space), 

every rule has one range value in each dimension (prefix 
could be regarded as a range). If the range values of two 
rules R1 and R2 in any dimension are disjoint, R1 and R2 must 
be disjoint in the 5-dimensional address space. Let a rule be 
represented by ([l1, h1], [l2, h2], [l3, h3], [l4, h4], [l5, h5]). We 
define L = (l1, l2, l3, l4, l5) as the low address and H = (h1, h2, 
h3, h4, h5) as the high address of the rule and the rule locates 
in between the low and high addresses. 

The proposed scheme includes two phases, the grouping 
phase and space decomposition phase. Based on many  

researches analyzing the general rule tables in the past, the 
rule replication problem is be lessened significantly by 
dividing rules into subgroups and construct the packet 
classification data structure for each subgroup independently. 
Then we can search each subgroup sequentially if it’s a 
software based solution in uniprocessor environment or 
search all the subgroups in parallel if it’s a hardware based  
solution implemented in the network processor, ASIC, or 
FPGA, etc. Therefore, like many other schemes, the first 
phase of ours proposed scheme is grouping the rules. In the 
second phase, we will apply a novel algorithm called 
CubeCuts to each subgroup. CubeCuts is proposed to be a 
scheme which does not generate any replicated rule. Zero 
replication cannot be done by any existing decision-tree 
based algorithm. As a result, the required memory will be 
less than the existing schemes. Also, the proposed will have 
higher search speed when the proposed CubeCuts scheme is 
implemented as a pipelined architecture in FPGA.  

B. Grouping Phase 
A good grouping scheme helps to resolve the rule 

replication problem. The proposed grouping procedure 
consists of two steps. First, we group rules according to the 
distribution of don’t-care values in all fields. For example, 
the values of source port field in ACL tables are all don’t-
care, the source IP and source port fields are usually don’t-

care in Firewall tables. There are �
=

5

0

5

i
iC  = 32subgroups, 

where 5
iC is the number of subgroups in which all the rules 

have don’t-care values in i fields. It is possible that some 
groups are empty for real-world rule tables. For instance, 
based on the analysis for various rule tables in [3], there are 
only 5-6 groups for ACL and FW tables of 10K rules. 
However, there exist 12 groups for IPC table of 10K rules. In 
order to keep the number of groups to a smaller size which is 
set to 3 in this paper, we pick up the two groups that contain 
the most and second most numbers of rules and merge all the 
remaining groups to be the third group. As a result, we have 
three groups. In the second step, the rules in each of the three 
groups are divided into more subgroups containing only 
disjoint rules based on the 5-dimensional disjoint 
relationship. In other words, after the second grouping step, 
all rules are 5-D disjoint in each subgroup. Figure 2 
illustrates that the rule table in Table I is divided into two 
subgroups, {R1, R2, R3} and {R4, R5}. R1, R2, R3 are 2-D 
disjoint with each other, and so on between R4 and R5. 

C. CubeCuts 
The proposed space decomposition scheme is called 

CubeCuts. We decompose the address space by using the 5-
dimensional sub-cubes. For a chosen subcube, the 5-D space 
is divided into two parts: one is the sub-space inside the 
subcube, and the other is the subspace outside the subcube. 
As done by the proposed CubeCuts, a binary decision is 
constructed. We don’t consider the multiway decision tree 
because our focus is the pipelined architecture implemented 
in FPGA and thus the tree depth does not have a negative 

Figure 2: Grouping rules with disjoint relationship in 2-D space 
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impact on search speed. The child node which represents 
outside the subcube can be processed recursively without 
changing its cover range in 5-D address space. Another child 
node representing the address space inside the subcube can 
also be processed recursively in the reduced address space at 
the next iteration. Figure 2 illustrates the decision trees built 
for the two subgroups. R1 and R3 are inside subcube C1((0,1), 
(3,3)) and  R2 is outside of C1. Similarly, in figure 2(b), R4 is 
inside subcube C2((0,0), (1,3)) and R5 is outside of C2. 

Since the rules in each subgroup are disjoint, it is easy to 
select a subcube to divide the rules into two parts such that 
no rule is replicated. The simplest subcube selection method 
in CubeCuts is to select the low and high addresses of one 
rule, L and H and cut the rules by the subcube C(L, H). We 
always can find subcube to decompose the address space 
without any rule replication. However, it is the worst case 
because there is only one rule inside the subcube C(L, H). As 
a result, the decision tree built this way is a skewed tree. 
However, computing the best subcube for cutting is a very 
time-comsuming task. Therefore, we use a simple heuristic 
to choose a subcube for cutting as follows. Let the number of 
rules in the current node to be processed be N. From the N 
lower addresses (L1, …, LN) and N high addresses (H1, …, 
HN), there are N× N pairs of (Li, Hj) which can form a 
subcube for cutting, where i , j = 1 to N. Among the 
subcubes formed by all these N× N pairs of (Li, Hj), we select 
the one such that balance factor called C_Balance is the 
minimum, where the balance factor is defined to be the 

difference between the number of rules inside and outside of 
the subcube. The detailed algorithm is shown in the first part 
of Figure 3. 

Based on the observation from our experiments, 
sometimes allowing a small number of rule replications can 
avoid building a bad skewed tree of a very large depth. So, 
we decide to merge other existing decision trees to avoid this 
situation. Currently, we adopt HiCuts because the decision 
tree constructed by HiCuts is also binary and the nodes in 
HiCuts can share the same node format as CubeCuts. Since 
the rule replications in HiCuts can be numerous, we propose 
a modified version of HiCuts called constrained HiCuts as 
follows. 

Constrained HiCuts (CHiCuts)- We constrain HiCuts by 
a rule replication ratio threshold in percentage. It means that 
the rule replication is less than threshold percent of the 
original number of rules after cutting. Specifically, no more 
than threshold rules are replicated every 100 rules after 
cutting. In the experiment, the threshold value is set to 30. 
The detailed algorithm is shown in the second part of Figure 
3. Notice that the definition of the balance factor H_Balance 
for CHiCuts is similar to C_Balance. 

D. Choosing between CubeCuts and Constrained HiCuts 
We choose the cutting method between CubeCuts and 

constrained HiCuts. The more “balanced” one must be 
chosen. If rule replications are more than 30% in constrained 
HiCuts, constrained HiCuts cannot be selected. As shown in 
the last part of Figure 3, the actual cutting method selected 
between CubeCuts and CHiCuts is the one whose balance 
factor is smaller than the other. Although we use two 
methods in space decomposition procedure, we can still 
record the cut information in the same format. For the 
sample in Figure 2(b), the space is cut into two equal-sized 
subspaces. It can be regarded as a typical HiCuts, but we 
record L2 (0,0) and H2 (1,3), which is the same format as in 
the CubeCuts. It is easier to design the comparator circuit in 
hardware implementation. 

When performing the search procedure, the header of 
incoming packet is compared with the cut information 
recursively until reaching a leaf node. For instance, in Figure 
2(a), if the incoming packet header is K = (2, 2), then the left 
child node should be searched. If K = (3, 0), it will traverse 
the right child node because (3, 0) is not inside the subcube 
C((0,1), (3, 3)). 

Our scheme reaches the goal of very low rule replication 
even in largest rule table. Table II shows the results of three 
different rulesets with sizes 1K, 5K, 10K. The left number is 
total rules after the decision tree is constructed, and the right 

// CubeCuts 
01 Besti = Null; 
02 Bestj = Null; 
03 C_balance = �; 
04 for i = 1 to N; 
05    for j = 1 to N; 
06  perform CubeCuts with subcube C(Li, Hj)  
07     Diff = | |RL-Child| - |R R-Child| | 
08    if ( (|RChild| == |RN| )  &&   (Diff < C_balance) )  
09  C_balance = Diff 
10            Besti = i; 
11  Bestj = j; 
12           endif 
13    endfor 
14 endfor 
// Constrained Hicuts 
15 Bestk = 0; 
16 H_balance = �; 
17 for k = 1 to 5; 
18    Perform HiCuts on dimension k 
19    Diff = | |RL-Child| - |R R-Child| | 
20    if ( (|RChild| < |RN|*(1+ threshold %) )&& (Diff <H_balance) ) 
21        H_balance = Diff; 
22        Bestk = k; 
23    endif 
24 endfor 
// Selection Heuristic 
25 if (H_balance < C_balance)  return HiCuts with dimension Bestk 
26 else return CubeCuts with subcube C(LBesti, HBestj ) 

Figure 3: Selection heuristic between CubeCuts and CHiCuts. 

TABLE II.        RULE REPLICATION RATIO 

Ruleset size ACL1 Firewall1 IPC1 
10K 9897/9603 

103% 
12633/9311 

136% 
11533/9037 

128% 
5K 4823/4415 

109% 
6803/4653 

146% 
5300/4460 

119% 
1K 965/916 

105% 
1023/791 

129% 
1015/938 

108% 
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one is the original size of rule table, and the rule replication 
ratio is shown as the percentage number below. Even for the 
worst case in Firewall1 of 5K rules, the rule replication ratio 
isn’t larger than 150% (100% means no rule replication). 

IV. ARCHITECTURE IMPLEMENTATION ON FPGA 
Our proposed scheme is very suitable for hardware 

implementation. Either pipeline or the parallel architecture 
can improve throughput in hardware design. Each decision 
tree is mapped on one search engine, so we can search all 
decision trees simultaneously by the parallel architecture. 
The pipeline architecture is used in two parts, Tree-pipeline 
and bucket-pipeline. As we mentioned before, searching 
procedure traces the decision tree to the leaf node and search 
rules sequentially through this node (bucket). Cut 
information is stored in memory at corresponding stage in 
Tree-pipeline. Bucket-pipeline contains 8 pipeline stages 
following the tree-pipeline. All rules are stored in memory of 
bucket-pipeline with end-point format. 

In our implementation, the protocol fields are not used to 
construct the decision trees. The protocol field is only used 
in the bucket search. Each node in Tree-pipeline needs 
215bits, 1 bit set when it’s a leaf node, 96*2 bits for two end-
points (SA, DA, SP, DP), and 11*2 bits for two pointer of 

child nodes. 
Each rule stored in bucket-pipeline needs 222 bits 

including 104*2 bits for the complete information for a rule 
in the end-point format (SA, DA, SP, DP, Pro) and 14 bits 
for the number of rules for the largest rule table containing 
over 10,000 (10K) rules. 

A. Dataset and Architecture Setup 
We use Access Control List (ACL), Firewall rules (FW) 

and IP Chains (IPC) with sizes 1K, 5K and 10K, generated 
by the ClassBench [14] and select Xilinx vertex-5[17] 
xc5vfx200t device with speed grade -2 in our experimental 
results. 

B. Memory Consumption 
The number of total leaf nodes is very low because our 

scheme having low rule replication. The rule mapping 
method is shown in Figure 4. We compute block memory 
utilization by adding number of entry * memory width of 
each memory we use. Table III shows the memory storage 
requirement in hardware implementation. 

Dual-ported Block-Rams on FPGA are used to 
implement necessary storage requirement. If the number of 
memory entries is less than 128, we use Distributed-Rams 
instead of Block-Rams by using LUT to reduce usage of the 
Block-Rams. 

C. Circuit Design 
Circuit design of a pipeline stage affects the maximum 

frequency our design can reach. If the logic operation is 
more complex, the gate delay between two registers must be 
longer. It makes throughput lower because of the long clock 
period. 

The main factor of gate delay depends on the complexity 
of searching procedure. If the operation of visiting a tree 
node has many consecutive computations, it will cause a 
high gate delay. Our proposed algorithm needs to compare 
the values of four fields twice. It seems having a large 
amount of computation, but all computation is independent 
to each other. Figure 5 is the implementation of branching 
circuit. The branching circuit computes the child pointer to 
be taken. There are eight comparators in the branching 
circuit, two of which are 32 bits, and another two are 16 bits. 
The longest path of this circuit is a 32-bit comparator plus an 
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AND gate. So, our circuit takes short gate delay to reach 
very high throughput. 

V. EXPERIMENTAL RESULTS 
Our proposed scheme has two parts. The grouping result 

represents how many decision trees we should create. The 
tree-pipelines in parallelism are shown in Figure 4. There are 
7 subgroups in ACL1-10K, 10 subgroups in FW1-10K, and 
14 subgroups in IPC1-10K. The maximum heights of trees 
built for the three rule tables mentioned above are 22, 23, 
and 37, respectively. 

Table IV shows the experimental results of hardware 
design in Xilinx ISE 12.2 environment, in terms of the slice 
resources and on-chip memory used. 

Our design can achieve the throughput of over 118Gbps 
assuming the minimum packet size of 40 bytes. Table V 
shows the throughput comparison between our scheme and 
other methods [3][7][10][4][8][13][9]. SPMT by PW and PL 
[3] and Improved HyperCuts[7] have most similar conditions 
to  our design. So, we show the details among these three 
methods in Table VI. We can see that our design has lowest 
total memory (1966Kbytes vs 612Kbytes vs 93Kbytes), 

Block-RAMs utilization (94% vs 89% vs 43%), and highest 
throughput (110.73 Gbps vs 80.23Gbps vs 118.46 Gbps). 

VI. CONCLUSION 
We proposed a novel decision-tree based algorithm 

called CubeCuts which is suitable in hardware environment. 
The grouping method with disjoint relationship greatly 
reduces the memory storage requirements. The size of on-
chip memory is no longer a bottleneck no matter what kind 
the rule table is. In FPGA implementation, the decision 
making computation of searching procedure is a parallel and 
pipelined architecture. So we can reach the high throughput 
with low memory usage. Our future work includes building a 
multi-ways decision tree of CubeCuts without increasing 
clock period too much. If we reduce the number of pipeline 
stages (tree height), the hardware cost of FPGA could be 
further lowered. 
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TABLE III.        MEMORY REQUIREMENT (KBITS) 

Ruleset size ACL1 Firewall1 IPC1 
10K 745.8 1026.4 967.9 
5K 380.1 489.5 442.6 
1K 77.9 85.4 83.9 

TABLE IV.        IMPLEMENTATION RESULT 

 ACL1-10K FW1-10K IPC1-10K 
# occupied 

Slices 
11414/30720 

37% 
15505/30720 

48% 
24798/30720 

80% 
# Block Ram 

Utilization 
195/456 

43% 
244/456 

53% 
194/456 

42% 
Clock period 5.276 (ns) 5.415 (ns) 5.398 (ns) 

TABLE V.        COMPARISION WITH OTHER METHODS 

Approaches # of rules Throughput (Gbps) 
Our approach 9603 118.46 

SPMT PW and PL[3] 9603 110.73 
Improved HyperCuts [7] 9603 80.23 

B2PC in ASIC [10] 3300 13.60 
NTLMC [4] 12507 12.16 

Power Saved HyperCuts [8] 25000 10.24 
BV-TCAM [13] 222 10.00 

2sBFCE [9] 4000 5.86 

TABLE VI.        COMPARISION WITH IMPROVED HYPERCUTS AND SPMT  

 SPMT by PW 
and PL [3] 

Improved 
HyperCuts [7] 

Our 
Approach 

Number of rules 9603 9603 9603 
Total Memory(KB) 1966 612 93 
Number of occupied 

Slices 
6854 / 30720 

24% 
10307/30720 

33% 
11414/30720 

37% 
Number of Block-
Rams utilization 

429 / 456 
94% 

407/456 
89% 

195/456 
43% 

Frequency (MHz) 173.02 125.4 189.5 
Throughput (Gbps) 110.73 80.23 118.46 
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